

Declaration of Performance

2873-CPR-M 530-5

1. Unique identification code of the product-type: Mungo Injection system MIT-SE Plus or MIT-COOL Plus for concrete

2. Manufacturer: Mungo Befestigungstechnik AG, Bornfeldstrasse 2, CH-4600 Olten/Switzerland

3. System/s of AVCP: System 1

4. Intended use or use/es:

Product	Intended use
Bonded anchor for use in	For fixing and/or supporting to concrete, structural elements (which
concrete	contributes to the stability of the works) or heavy units, see appendix,
	especially Annexes B1 to B6

5. European Assessment Document: ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD)

European Technical Assessment: ETA-10/0130 of 13 December 2016 **Technical Assessment Body:** DIBt – Deutsches Institut für Bautechnik

Notified body/ies: 2873 – IFSW

6. Declared performance:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See appendix, especially Annexes C1 to C4
Displacements under tension and shear loads	See appendix, especially Annexes C5 / C6

Safety in case of fire (BWR 2)

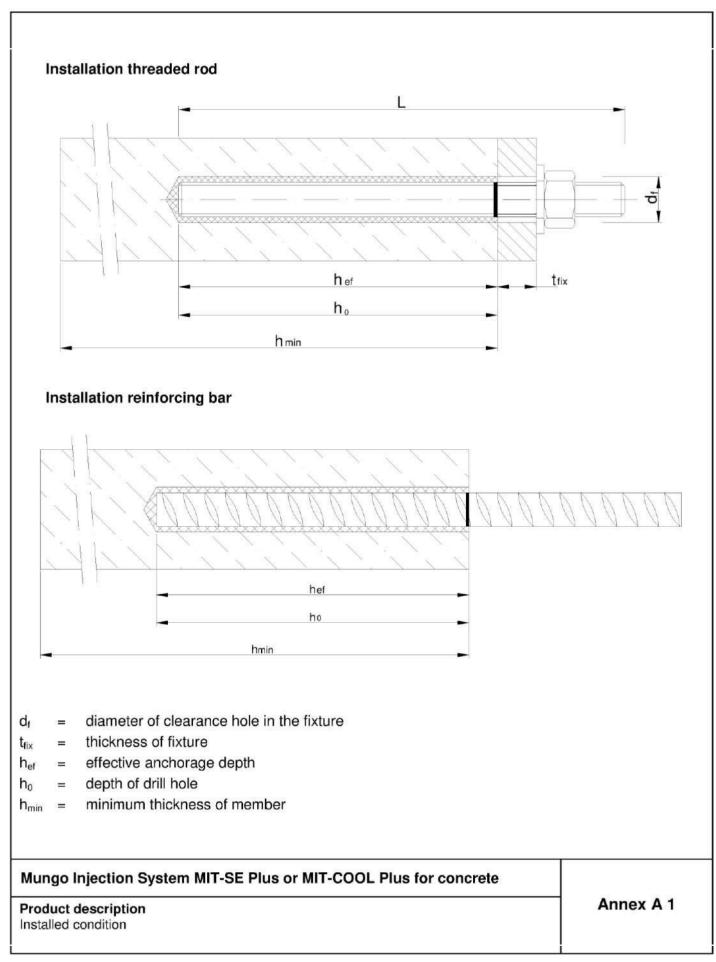
Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Singed for and on behalf of the manufacturer by:

Robert Klemencic Dipl.-Ing., MBA Head of Engineering Olten, 29.04.2021 CE

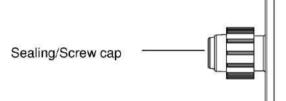
This DoP Has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail. The Appendix includes voluntary and complementary information in English language exceeding the (language as neutrally specified) legal requirements.


Mungo Bornfeldstrasse 2 Phone +41 62 206 75 75

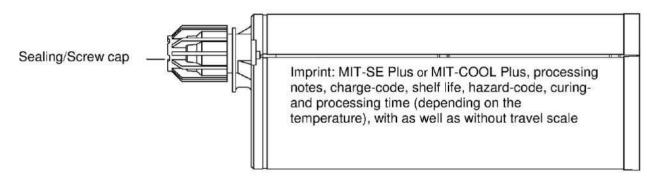
Refestiguagetechnik AG CH 4600 Olton Switzerland Fax +41 62 206 75 85

Befestigungstechnik AG CH-4600 Olten · Switzerland Fax +41 62 206 75 85 mungo@mungo.swiss

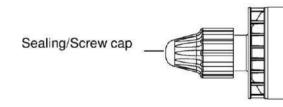
Page 5 of European Technical Assessment ETA-10/0130 of 13 December 2016


Page 6 of European Technical Assessment ETA-10/0130 of 13 December 2016

English translation prepared by DIBt


Cartridge: MIT-SE Plus or MIT-COOL Plus

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: MIT-SE Plus or MIT-COOL Plus, processing notes, charge-code, shelf life, hazard-code, curingand processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

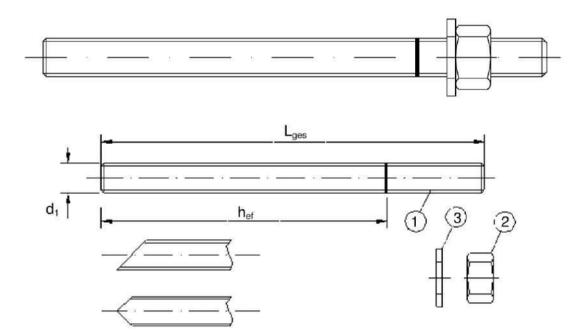
165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: MIT-SE Plus or MIT-COOL Plus, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

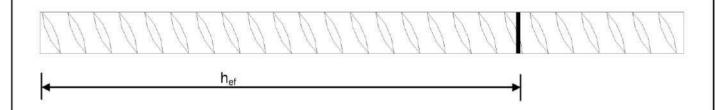
Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Product description


Injection system

Annex A 2

English translation prepared by DIBt


Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete	
Product description	Annex A 3
Threaded rod and reinforcing bar	

Page 8 of European Technical Assessment ETA-10/0130 of 13 December 2016

Part	Designation	Material	
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:1 , hot-dip galvanised ≥ 40 μm acc. to EN IS		C:2009
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 4.8, 5.8, 8.8, EN 199 A ₅ > 8% fracture elongation	1
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 or 4.8 rod Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	EN ISO 898-2:2012, SO 898-2:2012,
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised	
Stain	less steel		
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506- A ₅ > 8% fracture elongation	1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10 > M24: Property class 50 (for class 50 rd ≤ M24: Property class 70 (for class 70 rd	d) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 1	
High	corrosion resistance steel		
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506- A ₅ > 8% fracture elongation	1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 > M24: Property class 50 (for class 50 rd ≤ M24: Property class 70 (for class 70 rd	d) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005
Reinf	orcing bars		
4	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{Uk} = f_{Ik} = k \cdot f_{yk}$	1992-1-1/NA:2013
		į.	
Mur	ngo Injection System MIT-SE Plus or M	MIT-COOL Plus for concrete	
Des	luct description		Annex A 4

Page 9 of European Technical Assessment ETA-10/0130 of 13 December 2016

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: -40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Intended Use	Annex B 1
Specifications	

Page 10 of European Technical Assessment ETA-10/0130 of 13 December 2016

English translation prepared by DIBt

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >				()			
Thickness of fixture	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn				h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective analysis and anti-	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	n mm		h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Intended Use	Annex B 2
Installation parameters	

English translation prepared by DIBt

Steel brush

Table B3: Parameter cleaning and setting tools

Threaded Rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)
М8	14-2	10	12	10,5	
M10	8	12	14	12,5	
M12	10	14	16	14,5	No
	12	16	18	16,5	piston plug required
M16	14	18	20	18,5	
	16	20	22	20,5	
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
M27	25	32	34	32,5	# 32
M30	28	35	37	35,5	# 35
	32	40	41,5	40,5	# 38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm – uncracked concrete

Drill bit diameter (d₀): 10 mm to 40 mm

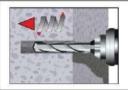
Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 40 mm

Mungo Injection	System MIT-	SE Plus or I	MIT-COOL	Plus for concrete
-----------------	-------------	--------------	----------	-------------------

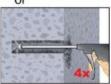
Intended Use

Cleaning and setting tools


Annex B 3

Page 12 of European Technical Assessment ETA-10/0130 of 13 December 2016

English translation prepared by DIBt


Installation instructions

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar

or

or

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can **only** be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm.

Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.

- 2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of four times.
 If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).
 - 2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand-pump can <u>only</u> be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

- Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

 For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

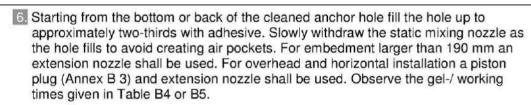
Intended Use

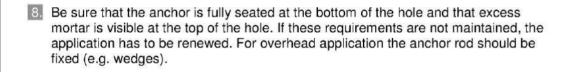
Installation instructions

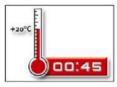
Annex B 4

Page 13 of European Technical Assessment ETA-10/0130 of 13 December 2016

English translation prepared by DIBt


Installation instructions (continuation)





Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 or B5).

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B4: Maximum Working time and minimum curing time MIT-SE Plus

Concre	te temp	perature	Gelling- / working time	Minimum curing time in dry concrete 1)
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾
-5 °C	to	-1°C	90 min	14 h
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
>	+ 40 °C	0	1,5 min	15 min
Cartride	ge temp	erature	+5°C to	+40°C

¹⁾ In wet concrete the curing time must be doubled.

Table B5: Maximum Working time and minimum curing time MIT-COOL Plus

Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete 1)
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 Min
+	10 °C		6 min	60 Min
Cartride	ge tem	perature	-20°C to	+10°C

In wet concrete the curing time must be doubled.

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete	
Intended Use	Annex B 6
Curing time	

²⁾ Cartridge temperature must be at min. +15°C.

Page 15 of European Technical Assessment ETA-10/0130 of 13 December 2016

-	25 [N/mm²]	not adr	12 8,5 9 6,5 6,5 5,0 missible	12 8,5 9 6,5 6,5 5,0 5,5 3,7 4,0 2,7 4,0 2,7	A _s · 12 8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0 2,7	12 9 6,5 5,5 3,7 4,0 2,7	8,5 not adr 6,5 not adr 5,5 3,8 not adr	10 missible 7,5 missible 5,5 missible 6,5 4,5 missible missible 4,5	9 6,5 5,0 6,5 4,5
Coked concrete C20/3 Coked concrete C20/3 Coked concrete C20/3 Coked concrete C20/3 Coked concrete C4, ucr Coked concrete C4, ucr Coked concrete C20/25 Coked concrete C20/25 Coked	25 [N/mm²]	7,5 7,5 5,5 5,5 4,0 not adr	8,5 9 6,5 6,5 5,0	8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	12 8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	9 6,5 5,5 3,7	not adr 8,5 not adr 6,5 not adr 5,5 3,8 not adr not adr	nissible 7,5 nissible 5,5 nissible 6,5 4,5 nissible nissible 4,5	6,5 5,0 6,5 4,5
Cked concrete C20/2 Increte TRK, ucr Increte TRK, C1 Increte TRK,	[N/mm²]	7,5 7,5 5,5 5,5 4,0 not adr	8,5 9 6,5 6,5 5,0	8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	9 6,5 5,5 3,7	not adr 8,5 not adr 6,5 not adr 5,5 3,8 not adr not adr	nissible 7,5 nissible 5,5 nissible 6,5 4,5 nissible nissible 4,5	6,5 5,0 6,5 4,5
TRIK, DET	[N/mm²]	7,5 7,5 5,5 5,5 4,0 not adr	8,5 9 6,5 6,5 5,0	8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	9 6,5 5,5 3,7	not adr 8,5 not adr 6,5 not adr 5,5 3,8 not adr not adr	nissible 7,5 nissible 5,5 nissible 6,5 4,5 nissible nissible 4,5	6,5 5,0 6,5 4,5
Dile	[N/mm²]	7,5 7,5 5,5 5,5 4,0 not adr	8,5 9 6,5 6,5 5,0	8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	8,5 9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	9 6,5 5,5 3,7	not adr 8,5 not adr 6,5 not adr 5,5 3,8 not adr not adr	nissible 7,5 nissible 5,5 nissible 6,5 4,5 nissible nissible 4,5	6,5 5,0 6,5 4,5
True	[N/mm²]	7,5 5,5 5,5 4,0 not adr	9 6,5 6,5 5,0	9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	9 6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	6,5 5,5 3,7 4,0	8,5 not adr 6,5 not adr 5,5 3,8 not adr not adr 4,0	7,5 missible 5,5 missible 6,5 4,5 missible missible 4,5	5,0 6,5 4,5
True	[N/mm²]	5,5 5,5 4,0 not adr	6,5 6,5 5,0 missible	6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	6,5 6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	6,5 5,5 3,7 4,0	not adr 6,5 not adr 5,5 3,8 not adr not adr	5,5 missible 6,5 4,5 missible missible 4,5	5,0 6,5 4,5
True	[N/mm²]	5,5 4,0 not adm	6,5 5,0 missible	5,5 3,7 5,5 3,7 4,0 2,7 4,0 2,7	6,5 5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	5,5 3,7 4,0	6,5 not adr 5,5 3,8 not adr not adr	5,5 missible 6,5 4,5 missible missible 4,5	6,5 4,5
$\begin{array}{c} \text{ole} & \tau_{\text{Rk,ucr}} \\ \text{concrete C20/25} \\ \text{ncrete} & \tau_{\text{Rk,cr}} \\ \hline \tau_{\text{Rk,cr}} \\ \hline \tau_{\text{Rk,cr}} \\ \hline \tau_{\text{Rk,cr}} \\ \\ \text{ole} & \tau_{\text{Rk,cr}} \\ \hline $	[N/mm²]	not adr	5,0	5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0 2,7	5,0 5,5 3,7 5,5 3,7 4,0 2,7 4,0	5,5 3,7 4,0	5,5 3,8 not adr not adr	6,5 4,5 nissible nissible 4,5	6,5 4,5
Concrete C20/25 ncrete TRK,cr TRK,C1 TRK,C1 ncrete TRK,C1 TRK,C1 TRK,C1	[N/mm²]	not adr	nissible	5,5 3,7 5,5 3,7 4,0 2,7 4,0 2,7	5,5 3,7 5,5 3,7 4,0 2,7 4,0	4,0	5,5 3,8 not adr not adr 4,0	6,5 4,5 missible missible 4,5	4,5
TRK,C1	[N/mm²]	not adr		3,7 5,5 3,7 4,0 2,7 4,0 2,7	3,7 5,5 3,7 4,0 2,7 4,0	4,0	3,8 not adr not adr 4,0	4,5 nissible nissible 4,5	4,5
TRK,C1	[N/mm²]	not adr		3,7 5,5 3,7 4,0 2,7 4,0 2,7	3,7 5,5 3,7 4,0 2,7 4,0	4,0	3,8 not adr not adr 4,0	4,5 nissible nissible 4,5	4,5
TRK,C1	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]	not adr		5,5 3,7 4,0 2,7 4,0 2,7	5,5 3,7 4,0 2,7 4,0	4,0	not adr not adr 4,0	missible nissible 4,5	100
TRK,C1	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]		missible	3,7 4,0 2,7 4,0 2,7	3,7 4,0 2,7 4,0	1000	not adr	nissible 4,5	
TRK,C1	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]		missible	4,0 2,7 4,0 2,7	4,0 2,7 4,0	1000	4,0	4,5	
True	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]		nissible	2,7 4,0 2,7	2,7 4,0	1000	US OF CONTRACT		
TRK,C1	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]		missible	4,0 2,7	4,0	2,7	2,8		4,5
TRK,C1 TRK,C1 TRK,C1 TRK,C1 TRK,C1 CO	[N/mm²] [N/mm²] [N/mm²] [N/mm²]	not adr	31	2,7				3,1	3,1
T _{Rk,C1}	[N/mm²] [N/mm²] [N/mm²] [N/mm²]	not adr		100000000000000000000000000000000000000	2,7		(2)(3)(2)(3)(3)(3)(3)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)	nissible	
ncrete $T_{Rk,C1}$ the transfer $T_{Rk,C1}$ Transfer $T_{Rk,C1}$	[N/mm²] [N/mm²] [N/mm²]	not adr			12020	12020	2000000	nissible	
DIE TRK,C1	[N/mm²] [N/mm²]	not adr	43	3,0	3,0	3,0	3,0	3,5	3,5
TRK,C1	[N/mm²]		nissible	2,0	2,0	2,0	2,1	2,4	2,4
C	V 20 100 100 100 100 100 100 100 100 100	-	13	3,0	3,0		ANTENIS EN	nissible	
-	10E/00		y-	2,0	2,0	22	not adr	nissible	
	25/30				1,0				
	35/45				1,0				
	240/50				1,0				
C	245/55				1,0	09			
C	50/60				1,	10			
ncrete	F3				10	,1			
e	[1]				7,	2			
ncrete k _{ucr}	[-]				10	,1			
e k _{cr}	[-]				7,	2			
C _{cr,N}	[mm]				1,5	het			
S _{cr.N}	[mm]				3.0	het			
3.000	100000				5.65	7.91			
C _{cr,sp}	[mm]		1,0	·h _{ef} ≤2	2 · h _{ef} 2,	5 - h	∫≤ 2,4 ·	h _{ef}	
S _{cr,sp}	[mm]				2 c	cr.sp			
crete) $\gamma_2 = \gamma_{inst}$		1,0				1,2			
e) γ _{2 = Yinst}			1,	4			not adr	nissible	
	Crete	Corete Kucr [-]	Corete	Corete	Corete	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Page 16 of European Technical Assessment ETA-10/0130 of 13 December 2016

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm		- 27		8	Ŷ.	70.	,	e .	î î	574
	$V_{Rk,s}$	[kN]				0,50 •	$A_s \cdot f_{uk}$			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	not adr	nissible			0,35 •	$A_s \cdot f_{uk}$		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0	,8			
Steel failure with lever arm										
Characteristic banding mamont	M ^o _{Bk,s}	[Nm]				1.2 · V	V _{el} • f _{uk}			
Characteristic bending moment	M ⁰ Rk,s,C1	[Nm]			No Perfe	ormance l	Determine	ed (NPD)		
Concrete pry-out failure										
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k (3)					2	,0			
Installation safety factor	γ2 = γinst					1	,0			
Concrete edge failure		13								
Effective length of anchor	ly .	[mm]		an an		l _f = min(h	ef; 8 d _{nom})		28	
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	$\gamma_2 = \gamma_{inst}$	200		20		1	.0			22

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 2

Page 17 of European Technical Assessment ETA-10/0130 of 13 December 2016

Anchor size reinforcin	g bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					9			l/				
Characteristic tension re	esistance N _{Rk}	s = N _{Rk,s,sei}	s [kN]					A _s • f _{uk}				
Combined pull-out and			Al abunda	h .								
Characteristic bond resi	stance in non-cracked co	ncrete C2	:0/25									
Temperature range I:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	τ _{Rk.ucr}	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible	
Characteristic bond resi	stance in cracked concre	te C20/25						No.			ý.	
	dry and wet concrete	T _{Rk,cr}	[N/mm ²]	ļ		5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	ory and not concrete	T _{Rk,C1}	[N/mm ²]	not adn	nissible	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	T _{Rk,cr}	[N/mm²]			5,5	5,5	5,5			nissible	
		TRK,C1	[N/mm²]			3,7	3,7	3,7		Coles de Coles	nissible	E
	dry and wet concrete	T _{Rk,cr}	[N/mm ²]			4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II: 80°C/50°C		TRK,C1	[N/mm²]	not adn	nissible	2,7	2,7	2,7	2,7	2,8	3,1	3,1
60°C/50°C	flooded bore hole	T _{Rk,cr}	[N/mm²]	-	080-7-1012	4,0	4,0	4,0		30 00	nissible	
		T _{Rk,C1}	[N/mm²]		-	2,7	2,7	2,7		WEST CENT		0.5
	dry and wet concrete	T _{Rk,cr}	[N/mm²]	-		3,0	3,0	3,0	Control (201000		3,5
emperature range III: 20°C/72°C		TRK.C1	[N/mm²]	not adn	nissible	2,0	2,0	2,0	2,0	- 22		2,4
120 0/12 0	flooded bore hole	T _{Rk,cr}	[N/mm ²]			3,0 2,0	3,0 2,0	3,0 2,0	not admissible 3,0 3,0 3,5 2,0 2,1 2,4 not admissible not admissible			
		TRK,C1	25/30		-	2,0	2,0	1,02		not adi	nissible	
			30/37					1,04				
Increasing factors for co			35/45					1,07				
(only static or quasi-stat Ψε	ic actions)	С	40/50					1,08				
		111.001	45/55					1,09				
	100X 50 00X 50	С	50/60					1,10				
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	- k ₈	[-]					10,1				
Section 6.2.2.3	Cracked concrete	1.10						7,2				
Concrete cone failure												
Factor according to	Non-cracked concrete	k _{ucr}	[-]					10,1				
CEN/TS 1992-4-5 Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2				
Edge distance	A TOTAL CONTROL OF THE SECOND CONTROL OF THE	C _{cr,N}	[mm]					1,5 h _{et}				
Axial distance		S _{cr.N}	[mm]					3,0 h _{ef}				
Splitting		S _{CF,N}	[iiiiii]	10				O,O Her				
Edge distance		C _{cr,sp}	[mm]			1,0 · h _{ef}	≤2·h _e	, _f 2,5 –	$\left(\frac{h}{h}\right) \leq$	2,4 · h _{ef}		
Axial distance		S _{cr,sp}	[mm]					2 C _{cr,sp}	··er /			
Installation safety factor	(dry and wet concrete)	γ2 = γinst		1,0				37	,2			
Installation safety factor	(flooded bore hole)	$\gamma_2=\gamma_{inst}$				1,4				not adr	nissible	
Performances	n System MIT-SE					conc	rete			Anne	ex C 3	3

Page 18 of European Technical Assessment ETA-10/0130 of 13 December 2016

English translation prepared by DIBt

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]				0,	50 · A _s ·	f _{uk}			
Characteristic shear resistance	V ⁰ _{Hk,s,C1}	[kN]		ot ssible			0,3	35 • A _s •	f _{uk}		
Ouctility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]				1.5	2 · W _{el} ·	f _{uk}			
Characteristic bending moment	M ⁰ Rk,s, C1	[Nm]			No Pe	erformar	ice Dete	rmined	(NPD)		
Concrete pry-out failure		•									
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Fechnical Report TR 029	k ₍₃₎						2,0				
nstallation safety factor	γ2 = Yinst						1,0				
Concrete edge failure											
Effective length of anchor	l _t	[mm]		470	4 12	l _f = m	in(h _{ef} ; 8	d _{nom})			
Dutside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
nstallation safety factor	γ2 = Yinst						1,0				

Performances

seismic action (performance category C1)

Annex C 4

Characteristic values of shear loads under static, quasi-static action and

Page 19 of European Technical Assessment ETA-10/0130 of 13 December 2016

English translation prepared by DIBt

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25	1	W	17.	ot	3	7: 110		. "	744
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{No} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25				,					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]					0,0	70		
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]					0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]					0,1	70		
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]		-			0,2	245		
Temperature range III: δ _{N0} -factor	δ_{No} -factor	[mm/(N/mm²)]					0,1	70		
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]					0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C6: Displacements under shear load (threaded rod)

Anchor size thre	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	concrete C2	0/25								
All temperature	δ _{v0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
anges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked con	crete C20/25	O W	100	TA C	D)		20	X	5 W	W.
All temperature	δ _{vo} -factor	[mm/(kN)]		_	0,11	0,10	0,09	0,08	0,08	0,07
anges	δ _{V∞} -factor	[mm/(kN)]		-	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Performances	Annex C 5
Displacements (threaded rods)	

Page 20 of European Technical Assessment ETA-10/0130 of 13 December 2016

nglish translation pre	pared by DI	lBt				Baute	echnik	ע	IDL		
Table C7: D	isplacen	nents under	tensio	n load	¹⁾ (reba	ır)					
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25	.L.								
Temperature range I:	δ_{No} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ _{NO} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25				10	//. VI	>		XV	0)	
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]						0,070			
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]						0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]						0,170			
80°C/50°C	$\delta_{N_{oo}}$ -factor	[mm/(N/mm²)]	12	-				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]						0,170			
120°C/72°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm²)]						0,245			
Calculation of th $\delta_{N0} = \delta_{N0}\text{-factor}$ $\delta_{N\infty} = \delta_{N\infty}\text{-factor}$ Table C8:	· τ; · τ;	nent τ: action bond nent under s		124							
Anchor size reinfo	N. 255		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	rete C20/2	25	10						70		

Anchor size reir	nforcing bar	65	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked co	ncrete C20/	25		***				***			
All temperature	δ _{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concre	te C20/25										
All temperature	δ _{vo} -factor	[mm/(kN)]			0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/(kN)]		-	0,17	0,16	0,15	0,14	0,12	0,11	0,10

) Calculation of the displacement $\delta_{V0} = \delta_{V0} \text{-factor} \cdot V; \qquad V \\ \delta_{V\infty} = \delta_{V\infty} \text{-factor} \cdot V;$ V: action shear load

ngo Injection System MIT-SE Plus or MIT-COOL Plus for concrete	
Performances	Annex C 6
Displacements (rebar)	100000000000000000000000000000000000000